50 research outputs found

    Nuclear gene phylogeography using PHASE: dealing with unresolved genotypes, lost alleles, and systematic bias in parameter estimation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A widely-used approach for screening nuclear DNA markers is to obtain sequence data and use bioinformatic algorithms to estimate which two alleles are present in heterozygous individuals. It is common practice to omit unresolved genotypes from downstream analyses, but the implications of this have not been investigated. We evaluated the haplotype reconstruction method implemented by PHASE in the context of phylogeographic applications. Empirical sequence datasets from five non-coding nuclear loci with gametic phase ascribed by molecular approaches were coupled with simulated datasets to investigate three key issues: (1) haplotype reconstruction error rates and the nature of inference errors, (2) dataset features and genotypic configurations that drive haplotype reconstruction uncertainty, and (3) impacts of omitting unresolved genotypes on levels of observed phylogenetic diversity and the accuracy of downstream phylogeographic analyses.</p> <p>Results</p> <p>We found that PHASE usually had very low false-positives (i.e., a low rate of confidently inferring haplotype pairs that were incorrect). The majority of genotypes that could not be resolved with high confidence included an allele occurring only once in a dataset, and genotypic configurations involving two low-frequency alleles were disproportionately represented in the pool of unresolved genotypes. The standard practice of omitting unresolved genotypes from downstream analyses can lead to considerable reductions in overall phylogenetic diversity that is skewed towards the loss of alleles with larger-than-average pairwise sequence divergences, and in turn, this causes systematic bias in estimates of important population genetic parameters.</p> <p>Conclusions</p> <p>A combination of experimental and computational approaches for resolving phase of segregating sites in phylogeographic applications is essential. We outline practical approaches to mitigating potential impacts of computational haplotype reconstruction on phylogeographic inferences. With targeted application of laboratory procedures that enable unambiguous phase determination via physical isolation of alleles from diploid PCR products, relatively little investment of time and effort is needed to overcome the observed biases.</p

    Analysis of standard DNA procedures on feathers of late 19th to late 20th century Osprey (Pandion haliaetus)

    Get PDF
    Species with well-documented demographic histories and well known perturbations to gene flow provide good models for understanding how historic events impact contemporary population genetic structure1,2. Osprey (Pandion haliaetus), a marine bird-of-prey, experienced steep declines after widespread organochloride pesticide (e.g. DDT) use in the mid-twentieth century 3, however, population genetic consequences remain unknown. Use of historic specimens can aid population genetic studies4,5, however, these samples can degrade over time impacting quantity and quality of extracted DNA5. We compared the concentrations of extracted DNA of Osprey feathers from museum and research collections to those of contemporary samples collected according to standard field collection protocols

    Comparison of Pollination Graphs

    Get PDF
    From the agent-based, correlated random walk model presented, we observe the effects of varying the maximum turning angle, δmax, tree density, ω, and pollen carryover, κmax, on the distribution of pollen within a tree population by examining pollination graphs. Varying maximum turning angle and pollen carryover alters the dispersal of pollen, which affects many measures of connectivity of the pollination graph. Among these measures the clustering coefficient of fathers is largest when δmax is between 60 and 90∘. The greatest effect of varying ω is not on the clustering coefficient of fathers, but on the other measures of genetic diversity. In particular when comparing simulations with randomly placed trees with that of actual tree placement of C. florida at the VCU Rice Center, it is clear that having specific tree locations is crucial in determining the properties of a pollination graph

    Identification of Eastern United States Reticulitermes Termite Species via PCR-RFLP, Assessed Using Training and Test Data

    Get PDF
    Reticulitermes termites play key roles in dead wood decomposition and nutrient cycling in forests. They also damage man-made structures, resulting in considerable economic loss. In the eastern United States, five species (R. flavipes, R. virginicus, R. nelsonae, R. hageni and R. malletei) have overlapping ranges and are difficult to distinguish morphologically. Here we present a molecular tool for species identification. It is based on polymerase chain reaction (PCR) amplification of a section of the mitochondrial cytochrome oxidase subunit II gene, followed by a three-enzyme restriction fragment length polymorphism (RFLP) assay, with banding patterns resolved via agarose gel electrophoresis. The assay was designed using a large set of training data obtained from a public DNA sequence database, then evaluated using an independent test panel of Reticulitermes from the Southern Appalachian Mountains, for which species assignments were determined via phylogenetic comparison to reference sequences. After refining the interpretive framework, the PCR-RFLP assay was shown to provide accurate identification of four co-occurring species (the fifth species, R. hageni, was absent from the test panel, so accuracy cannot yet be extended to training data). The assay is cost- and time-efficient, and will help improve knowledge of Reticulitermes species distributions

    A systems biology approach to invasive behavior: comparing cancer metastasis and suburban sprawl development

    Get PDF
    Background Despite constant progress, cancer remains the second leading cause of death in the United States. The ability of tumors to metastasize is central to this dilemma, as many studies demonstrate successful treatment correlating to diagnosis prior to cancer spread. Hence a better understanding of cancer invasiveness and metastasis could provide critical insight. Presentation of the hypothesis We hypothesize that a systems biology-based comparison of cancer invasiveness and suburban sprawl will reveal similarities that are instructive. Testing the hypothesis We compare the structure and behavior of invasive cancer to suburban sprawl development. While these two systems differ vastly in dimension, they appear to adhere to scale-invariant laws consistent with invasive behavior in general. We demonstrate that cancer and sprawl have striking similarities in their natural history, initiating factors, patterns of invasion, vessel distribution and even methods of causing death. Implications of the hypothesis We propose that metastatic cancer and suburban sprawl provide striking analogs in invasive behavior, to the extent that conclusions from one system could be predictive of behavior in the other. We suggest ways in which this model could be used to advance our understanding of cancer biology and treatment

    Life After Succession in the Family Business: Is It Really the End of Problems?

    Get PDF
    The succession processes in family business are well chronicled in the business literature. Most of the research focuses on the process of transferring power within the business-family. What has not been as closely examined is the after-succession environment that exists when the management and leadership of the family business are passed on to the next generation. This article addresses that organizational climate and the potential for additional problems in the business-family if post-succession issues are not identified and addressed and suggests some steps that will be helpful in producing complete succession success.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    The Impact of Timing and Mode of Entry on Successor Development and Successful Succession

    Get PDF
    Family businesses frequently are disrupted by the process of succession of leadership and ownership. This article focuses on causes of conflict and how to manage success after siblings have entered the business.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Data from: Sex-specific graphs: Relating group-specific topology to demographic and landscape data

    No full text
    Sex-specific genetic structure is a commonly observed pattern among vertebrate species. Facing differential selective pressures, individuals may adopt sex-specific life history traits that ultimately shape genetic variation among populations. Although differential dispersal dynamics are commonly detected in the literature, few studies have used genetic structure to investigate sex-specific functional connectivity. The recent use of graph theoretic approaches in landscape genetics has demonstrated network capacities to describe complex system behaviours where network topology represents genetic interaction among subunits. Here, we partition the overall genetic structure into sex-specific graphs, revealing different male and female dispersal dynamics of a fisher (Pekania [Martes] pennanti) metapopulation in southern Ontario. Our analyses based on network topologies supported the hypothesis of male-biased dispersal. Furthermore, we demonstrated that the effect of the landscape, identified at the population level, could be partitioned among sex-specific strata. We found that female connectivity was negatively correlated with snow depth, whereas connectivity among males was not. Our findings underscore the potential of conducting sex-specific analysis by identifying landscape elements or configuration that differentially promotes or impedes functional connectivity between sexes, revealing processes that may otherwise remain cryptic. We propose that the sex-specific graph approach would be applicable to other vagile species where differential sex-specific processes are expected to occur

    Data from: Urbanization as a facilitator of gene flow in a human health pest

    No full text
    Urban fragmentation can reduce gene flow that isolates populations, reduces genetic diversity and increases population differentiation, all of which have negative conservation implications. Alternatively, gene flow may actually be increased among urban areas consistent with an urban facilitation model. In fact, urban adapter pests are able to thrive in the urban environment and may be experiencing human-mediated transport. Here, we used social network theory with a population genetic approach to investigate the impact of urbanization on genetic connectivity in the Western black widow spider, as an urban pest model of human health concern. We collected genomewide SNP variation from mitochondrial and nuclear ddRAD sequence datasets from 210 individuals sampled from 11 urban and 10 non-urban locales across its distribution of the Western U.S. From urban and non-urban contrasts of population, phylogenetic, and network analyses, urban locales have higher within-population genetic diversity, lower between-population genetic differentiation, and higher estimates of genetic connectivity. Social network analyses show that urban locales not only have more connections, but can act as hubs that drive connectivity among non-urban locales, which show signatures of historical isolation. These results are consistent with an urban facilitation model of gene flow, and demonstrate the importance of sampling multiple cities and markers to identify the role that urbanization has had on larger spatial scales. As the urban landscape continues to grow, this approach will help determine what factors influence the spread and adaptation of pests, like the venomous black widow spider, in building policies for human and biodiversity health

    Automating human thought processes for a UAV forced landing

    Get PDF
    This paper describes the current status of a program to develop an automated forced landing system for a fixed-wing Unmanned Aerial Vehicle (UAV). This automated system seeks to emulate human pilot thought processes when planning for and conducting an engine-off emergency landing. Firstly, a path planning algorithm that extends Dubins curves to 3D space is presented. This planning element is then combined with a nonlinear guidance and control logic, and simulated test results demonstrate the robustness of this approach to strong winds during a glided descent. The average path deviation errors incurred are comparable to or even better than that of manned, powered aircraft. Secondly, a study into suitable multi-criteria decision making approaches and the problems that confront the decision-maker is presented. From this study, it is believed that decision processes that utilize human expert knowledge and fuzzy logic reasoning are most suited to the problem at hand, and further investigations will be conducted to identify the particular technique/s to be implemented in simulations and field tests. The automated UAV forced landing approach presented in this paper is promising, and will allow the progression of this technology from the development and simulation stages through to a prototype syste
    corecore